

Ramsar Information Sheet

Published on 26 August 2020

United States of America

Lower Wisconsin Riverway

Designation date 14 February 2020

Site number 2417

Coordinates 43°09'47"N 90°21'48"W

Area 17 700,00 ha

Color codes

Fields back-shaded in light blue relate to data and information required only for RIS updates.

Note that some fields concerning aspects of Part 3, the Ecological Character Description of the RIS (tinted in purple), are not expected to be completed as part of a standard RIS, but are included for completeness so as to provide the requested consistency between the RIS and the format of a 'full' Ecological Character Description, as adopted in Resolution X.15 (2008). If a Contracting Party does have information available that is relevant to these fields (for example from a national format Ecological Character Description) it may, if it wishes to, include information in these additional fields.

1 - Summary

Summary

The Lower Wisconsin Riverway (LWR) includes approximately 17,700 ha of land located from the Prairie du Sac dam to the confluence with the Mississippi River. This 92-mile-long river stretch, with its characteristic gradient from river, sloughs, and marshes, to forested bottomlands, sand terraces, and bluff tops, harbors high species and community diversity and richness. Its importance is magnified through common boundaries with the nationally and internationally significant Mississippi River, the Driftless Area, and the Upper Mississippi migratory bird flyway. The LWR is part of the Lower Wisconsin State Riverway (LWSR), which was designated in 1989 and incorporates approximately 38,445 ha, including the river, associated wetlands, and adjacent uplands. The LWSR is owned by state, private, and federal entities and its land use is regulated by a public LWSR Board and managed by the Wisconsin Department of Natural Resources (WDNR). The LWR wetlands are a significant statewide, national, and international resource. Wisconsin's 2006 Land Legacy Report (WDNR 2006a) found the LWSR to be one of Wisconsin's most significant conservation and recreational areas. Further, the WDNR Wildlife Action Plan (WDNR 2005, 2018) and Implementation Report (WDNR 2008) identifies the river corridor as having Continentally Important Resources. The LWR is listed as an Important Bird Area by the Wisconsin Bird Conservation Initiative for the critical habitat it provides for many wetlands, forest, and grassland birds of conservation concern. The LWR within the LWSR boundary is listed as an Exceptional Resource Waterway by statute (ch. NR 102, Wis. Adm. Code), affording increased water quality protection. Furthermore, the extensive network of natural communities functions as ecologically significant areas for rare fishes, mussels, aquatic insects, reptiles and amphibians. These wetlands are sanctuaries for aquatic plants and fish not typically found in the main river channel, and they contain the most abundant populations of rare and endangered aquatic species in southern Wisconsin.

2 - Data & location

2.1 - Formal data

2.1.1 - Name and address of the compiler of this RIS

Compiler 1

Name	Jean Unmuth
Institution/agency	Wisconsin Department of Natural Resources
	The control of the co
Postal address	1500 N. Johns St. Dodgeville, WI, 53533
E-mail	jean.unmuth@wisconsin.gov
Phone	16089351926

2.1.2 - Period of collection of data and information used to compile the RIS

From year 2013

To year 2018

2.1.3 - Name of the Ramsar Site

Official name (in English, French or Spanish)

Lower Wisconsin Riverway

2.2 - Site location

2.2.1 - Defining the Site boundaries

b) Digital map/image

<1 file(s) uploaded>

Former maps 0

Boundaries description

The proposed site extends along 92.3 miles of the lower Wisconsin River from the hydroelectric dam at Prairie du Sac downstream to the confluence with the Mississippi River. It comprises those parts of the LWSR that are owned by State and Federal public agencies, the Ho-Chunk Nation, and one consenting private landowner. The LWR consists primarily of the Wisconsin River, tributary streams, backwater wetlands, and floodplain habitats. It also includes adjacent upland habitats protective of ground and surface waters, and which are functionally linked to wetland plant-animal communities.

2.2.2 - General location

a) In which large administrative region does	The LWR is located in the Midwest U.S. in southwestern Wisconsin, United States of America.
b) What is the nearest town or population centre?	Madison 60 miles/97 kilometres

2.2.3 - For wetlands on national boundaries only

a) Does the wetland extend onto the territory of one or more other countries?

b) Is the site adjacent to another designated Ramsar Site on the territory of another Contracting Party?

2.2.4 - Area of the Site

Official area, in hectares (ha): 17700

Area, in hectares (ha) as calculated from GIS boundaries 17683.391

2.2.5 - Biogeography

Biogeographic regions

RIS for Site no. 2417, Lower Wisconsin Riverway, United States of America

Regionalisation scheme(s)	Biogeographic region
WWF Terrestrial Ecoregions	Biome: Temperate broadleaf and mixed forests
WWF Terrestrial Ecoregions	Ecoregion: Upper Mdwest forest-savanna transition

Other biogeographic regionalisation scheme

Description of Ecological Subregions: Sections of the Coterminous United States"

Compiled by WH. McNab, D.T Cleland, JH.A. Freeouf, J.E. Keyes, G.J. Nowacki, and C.A.Carpenter, USDA, Forest Service General Technical Report WO-76B, January 2007

3 - Why is the Site important?

3.1 - Ramsar Criteria and their justification

☑ Criterion 1: Representative, rare or unique natural or near-natural wetland types

Hydrological services provided

The riverway's natural continua along gradients of topography, aspect, soils, and hydrology maintain a natural dynamic, both along the riverway and across it from river to floodplain forest and savanna, marsh, shrub, terrace barrens/prairie to bluffside forest, savanna, and prairie. Some communities, like river barrens and oxbow sloughs, are better represented here than anywhere else in the State or Midwest and are essential to rare fauna. The extent, variety, connectedness, and relatively natural character of plantanimal communities of this area make it one of the most ecologically significant riverways in North America.

Other ecosystem services provided Wisconsin.

These wetlands are sanctuaries for aquatic plants and fish not typically found in the main river channel, and they contain the most abundant populations of rare and endangered aquatic species in southern Wisconsin.

The wetlands of the LWSR offer materials useful for the perpetuation of tribal culture. Sustainable forestry production of timber and pulp provides considerable value to local economies while preserving wildlife habitat.

☑ Criterion 2 : Rare species and threatened ecological communities

☑ Criterion 3 : Biological diversity

The LWR is within Wisconsin's Western Coulee and Ridges Ecological Landscape, covering the majority of the multi-state, unglaciated Driftless Area. The LWR includes high quality examples of the majority of characteristic species populations and native plant-animal communities that have been identified for conservation priority within that landscape, including all 12 fish species, 25 of 27 breeding-bird species, and 17 of 19 communities (WDNR 2008b).

In addition to its large number of at-risk and characteristic plant and animal species and communities, the LWR is especially significant for the extent, continuity, and connectivity within and among these populations and communities. Extensive tracts are needed by many animal species that rely, for example, on mature forest (e.g., Red-shouldered Hawk), barrens (e.g., several lizard and snake species, ornate box turtle), and grasslands (many declining grassland bird and small mammal species, e.g., prairie vole) that are elsewhere increasingly fragmented, isolated, or of poor quality. The 149km-long river and its immediate floodplain corridor also connect myriad intraspecific populations with "friendly" traversable habitat—even for some species that use uplands primarily or secondarily (e.g., medium-to-large mammals, many forest birds). The presence of extensive floodplain forest makes adjacent upland forest more likely to be inhabited by forest interior birds (Mossman and Steele in litt.).

Justification

The riverway's natural continua along gradients of topography, aspect, soils, and hydrology maintain a natural dynamic, both along the riverway and across it from river to floodplain forest and savanna, marsh, shrub-carr, terrace barrens/prairie to bluffside forest, savanna, and prairie. Many species benefit from these dynamic ecotones and the connections among community types, e.g. terrestrial amphibians that migrate to wetlands to breed; aquatic turtles that do the opposite; xerophytic plants and animals that rely on deposition of river sands; and fish and other aquatic species that migrate to oxbow sloughs and other shallow or special microhabitats to breed. Many species are particularly adapted to wetland-upland ecotones and associated natural disturbance (e.g., Kentucky Warbler, Bell's Vireo, many "wetland edge" plants and insects). Consequently, the LWR has been recognized as an Important Bird Area (Steele 2007), priority grassland bird management area (Sample and Mossman 1997), a critical watershed for at-risk fish and mussels (Master 1998), Wisconsin Wetland Gem® (WWA 2009), a Conservation Opportunity Area of continental significance (WDNR 2008b), and a "functional landscape" (TNC 2001).

- ☑ Criterion 4 : Support during critical life cycle stage or in adverse conditions
- ☑ Criterion 7 : Significant and representative fish

The LWR is one of the highest-quality large warm water river reaches remaining in the Midwestern U.S. (Lyons 2005, Marshall and Lyons 2008). Unimpeded by dams, the 147 km (92 mile) stretch of the braided channel river includes diverse floodplain habitats that support 98 species of native fish: 10 fish species listed as state special concern, 6 species listed as state threatened, and 4 species listed as state endangered. Within the actively flowing braided channels, a number of rare species are found including state threatened paddlefish and river redhorse, state endangered goldeye and crystal darter, and state special concern lake sturgeon and western sand darter.

The LWR main channel also supports outstanding sport fisheries including smallmouth bass (Micropterus dolomieu), walleye (Stizostedion vitreus), channel catfish (Ictalurus punctatus), and northern pike (Esox lucius). Within the vast LWR floodplain lays a network of off channel habitats including cut off channel oxbow lakes, sloughs, creek bottoms and small streams impounded by beavers. These diverse habitats support fish species that generally avoid fast currents but also seasonally support main channel species as nursery and spawning habitats and as refuges during major floods. Rare species found within the off channel habitats include the state endangered starhead topminnow, state special concern mud darter, lake chubsucker, least darter, weed shiner, pugnose minnow and pirate perch. Popular sport fishing in the oxbow lakes and sloughs include bluegill (Lepomis macrochirus), northern pike (Esox Lucius) and largemouth bass (Micropterus salmoides). The current Exceptional Resources Waters (ERW) anti-degradation designation of the LWR in part reflects the designation of the river as supporting outstanding and diverse fisheries

The high diversity of freshwater mussels found in the LWR is directly linked to the vast diversity of fish, since the glochidia larvae stage of the life cycle of mussels depends on fishes as hosts. The LWR and floodplain backwater lakes have one of the most diverse mussel faunas in the state, with 45 different species of mussels. A number of rare mussel species have their stronghold in the LWR. Several important mussel beds scattered throughout the LWSR support significant populations of the federally endangered Higgins' eye pearly mussel, and sheepnose, along with 5 state endangered and 5 state threatened mussels.

☑ Criterion 8 : Fish spawning grounds, etc.

The LWSR retains most of the natural features that the river exhibited centuries ago (Lyons 2005, Marshall and Lyons 2008). Dams are nonexistent in this stretch of river while other engineered modifications have been kept to a minimum. Consequently, lateral connections, in many spatial and temporal forms, within the floodplain are largely intact. Imbedded within the floodplain forest and other wetlands, cutoff channel oxbow lakes, sloughs, beaver ponds, delta ponds, and other floodplain aquatic features provide spawning habitats and food resources for seasonal migrations of walleye, northern pike, smallmouth bass and sauger (Stizostedion canadense) (Becker 1983). Some of the rare off channel fish species are also opportunistic and migrate during floods including the state endangered starhead topminnow, state special concern pirate perch and weed shiner (Roach et al. 2009, Marshall 2007, Ross and Baker 1983, Killgore and Miller 1995). These flood pulse migrations also likely influence species distributions across the floodplain. These important connections extend beyond the LWR and confluence with the Mississippi River.

Justification

☑ Criterion 9 : >1% non-avian animal population

3.2 - Plant species whose presence relates to the international importance of the site

Scientific name	Common name	Criterion 2	Criterion 3	Criterion 4	IUCN Red List	CITES Appendix I	Other status	Justification
Agalinis skinneriana	Pale False Foxglove	 ✓	>				Endangered in Wisconsin	
Asclepias purpurascens	Purple Milkweed	₽	2				Endangered in Wisconsin	
Platanthera flava herbiola	Pale Green Orchid	/	₽	 ✓			CITES Appendix II	Also Threatened in Wisconsin
Polygala incarnata	Pink Milkwort	 ✓	2				Endangered in Wisconsin	
Potamogeton confervoides	Agal- Leaved Pondweed	/	₽		LC		Threatened in Wisconsin	
Trillium nivale	Snow Trillium	V	₽				Threatened in Wisconsin	

The LWR is a mosaic of plant communities. Extensive stretches of intact floodplain forest line the river margins, characterized by canopies of silver maple, eastern cottonwood, river birch, and swamp white oak. Grasses and forbs are often sparse while herbaceous and woody vines are abundant in forested floodplains, more so than in any other plant community in the region. The riverside margins support a unique flora of ephemeral forbs and grasses that emerge as adjacent river levels drop in the late summer. Floodplain forests are pocked and sliced by patches of sedge meadows, backwater sloughs, and marshes. Backwater areas typically have 24 different species of submergent and floating leaf plants that fish, insects, herps, ducks, and mammals are highly dependent upon during certain life stages. This includes state threatened algal leaved pondweed, and state special concern Oakes' pondweed. Fringing the backwater areas are emergents such as arrowhead and bullrushes, wild rice, bur-reed, among others. Over 80% of the state's population of purple rocket is found in the corridor of the river. Other, more typically southern species like sycamore, pin oak and spreading chervil reach their northwestern limit in this area.

3.3 - Animal species whose presence relates to the international importance of the site

Phylum	Scientific name	Common name	Species qualifies under criterion	Species contributes under criterion 3 5 7 8	Period of pop. Est.	% occurrence 1)	IUCN Red List	CITES Appendix I	CMS Appendix I	Other Status	Justification
Birds											
CHORDATA/ AVES		Henslow's Sparrow								WI special concern	utilizes wet meadows as habitat
CHORDATA/ AVES		Grasshopper Sparrow					LC			WI Special Concern	utilizes wet meadows as habitat
CHORDATA/ AVES	Ardea alba	Great Egret					LC			WI Threatened	important habitat for sp.
CHORDATA/ AVES		Red-shouldered Hawk					LC			WI Threatened & CITES Appendix II	important habitat for sp.
CHORDATA/ AVES	Caprimulgus vociferus	Whip-poor-will		2 000							nests in upland areas upland mixed deciduous-pine forests. Suspected to be declining.
CHORDATA/ AVES	Chaetura pelagica	Chimney Swift					W				utilizes uplands within site
CHORDATA/ AVES	Chondestes grammacus	Lark Sparrow					LC			WI special concern	utilizes uplands and fields as habitat
CHORDATA/ AVES	Colinus virginianus	Northern Bobwhite					NT			WI special concern	
CHORDATA/ AVES	Empidonax minimus	Least Flycatcher					LC			WI special concern	
CHORDATA/ AVES	Empidonax virescens	Acadian Flycatcher					LC			WI Threatened	utilizes lowlands as habitats

Phylum	Scientific name	Common name	Species qualifies under criterion	contr un crit	ecies ributes nder erion	Pop. Size	Period of pop. Est.	% occurrence 1)	IUCN Red List	CITES Appendix	CMS Appendix I	Other Status	Justification
CHORDATA/ AVES	Euphagus carolinus	Rusty Blackbird							W			WI Special concern	utilizes bogs and stream edges for nesting
CHORDATA/ AVES	Falco peregrinus	Peregrine Falcon	2 200						LC	\checkmark		WI Endangered & CITES Appendix II	nests within site boundaries
CHORDATA/ AVES	Geothlypis formosa	Kentucky Warbler							LC			WI Threatened	breeds in sites that are moist, with heavy undergrowth, thickets and ground vegetation.
CHORDATA/ AVES	Grus americana	Whooping Crane				l			EN	✓		U.S. Endangered	depend on large, open wetland ecosystems to eat, roost, and make their nests.
CHORDATA/ AVES	Helmitheros vermivorum	Worm-eating Warbler	2						LC			WI Threatened	utilizes uplands as habitat
CHORDATA/ AVES	Hylocichla mustelina	Wood Thrush							NT				utilizes uplands within site
CHORDATA/ AVES	Icteria virens	Yellow-breasted Chat							LC			WI Special concern	nests in second-growth habitats, old pastures, thickets and brush, particularly near streams and ponds
CHORDATA/ AVES	Ixobrychus exilis	Least Bittern	2 200						LC			WI Special concern	utilizes lowlands within site as habitat
CHORDATA/ AVES	Melanerpes erythrocephalus	Red-headed Woodpecker	2 000						LC			WI Special concern	
CHORDATA/ AVES	Nyctanassa violacea	Yellow-crowned Night-Heron; Yellow-crowned Night Heron							LC			WI Threatened	utilizes lowlands within site as habitat
CHORDATA/ AVES	Pooecetes gramineus	Vesper Sparrow	2 200						LC			WI Special concern	utilizes uplands within site as habitat
CHORDATA/ AVES	Progne subis	Purple Martin	2 000						LC			WI Special concern	
CHORDATA/ AVES	Protonotaria citrea	Prothonotary Warbler	2 200						LC			WI special concern	breeds in floodplain habitats
CHORDATA/ AVES	Rallus elegans	King Rail							NT			WI special concern	utilizes shallow marshes as habitat
CHORDATA/ AVES	Scolopax minor	American Woodcock	2 000			l			LC			WI special concern	
CHORDATA/ AVES	Setophaga cerulea	Cerulean Warbler	VVO C						NT		V	WI Threatened	important habitat for sp.
CHORDATA/ AVES	Setophaga citrina	Hooded Warbler	2 200						LC			WI threatened	utilize uplands within site as habitat
CHORDATA/ AVES	Spiza americana	Dickcissel	2 000			l			LC			WI special concern	
CHORDATA/ AVES	Sturnella magna	Eastern Meadowlark	220C						NT			WI special concern	nests in site's mesic areas
CHORDATA/ AVES	Sturnella neglecta	Western Meadowlark	220c						LC			WI special concern	utilizes site's grasslands for nesting
CHORDATA/ AVES	Vireo bellii	Bell's Vireo							LC			WI Threatened	utilizes site's uplands as habitat
CHORDATA/ AVES	Xanthocephalus xanthocephalus	Yellow-headed Blackbird							LC			WI special concern	nests near emergent aquatic habitats
	and Crustacea												
CHORDATA/ ACTINOPTERYGI	Ammocrypta clara	Western sand darter; Western sand darter	2 000									IUCN Red List VU	

Phylum	Scientific name	Common name	q	Species ualifies under riterion 4 6		Species contributes under criterion 3 5 7 8	Size		% occurrence 1)	IUCN Red List		CMS Appendix I	Other Status	Justification
MOLLUSCA/ BIVALVIA	Arcidens confragosus	rock pocketbook	1	Z O		3008	9			LC			WI Threatened	Utilize wetland in larval stage
CHORDATA/ ACTINOPTERYG	Crystallaria asprella	Crystal darter; Crystal darter	Ø.	2 0		<u> </u>	9			W			WI Endangered	critical habitat for sp.
CHORDATA/ ACTINOPTERYG	Cycleptus II elongatus	sucker	1	2 0		2 000)			LC			WI Threatened	important habitat for sp.
CHORDATA/ ACTINOPTERYG	Fundulus dispar	Northern starhead topminnow; Starhead topminnow		2 0		2026	9			LC			WI Endangered	critical habitat for sp.
CHORDATA/ ACTINOPTERYG	Hiodon alosoides	Shad mooneye	Ø(Z O		300g	9			LC			WI Endangered	important habitat for sp.
CHORDATA/ ACTINOPTERYG	Hyboneie amnie	Pallid shiner	V	2 0		3008	9			LC			WI Endangered	important habitat for sp.
CHORDATA/ ACTINOPTERYG	letiohus niger	Black buffalo; Black buffalo; Black buffalo; Black buffalo; Black buffalo; Black buffalo		7 0		2 008	9			LC			WI Threatened	important habitat for sp.
MOLLUSCA/ BIVALVIA	Lampsilis higginsii	Higgins eye			1	2020	1998	1988 to 2016	2	EN			US Endangered & Wisconsin Endangered	Estimated global population – 100,000. This species is endemic to the Upper Mssissippi River and tributaries including the St. Croix River and Lower Wisconsin River.
MOLLUSCA/ BIVALVIA	Lampsilis teres	yellow sandshell	Ø.	V (3008	9			LC			WI Endangered	Utilize wetland in larval stage
CHORDATA/ ACTINOPTERYG	Macrhybopsis III hyostoma	Shoal chub	1	2 0		2 006	9			LC			WI Threatened	important habitat for sp.
MOLLUSCA/ BIVALVIA	Plethobasus cyphyus	Sheepnose	Ø(2020]			EN			US Endangered & Wisconsin Endangered	
CHORDATA/ ACTINOPTERYG	Polyodon spathula	Paddlefish	2			20 Z	9			W			CITES Appendix II & WI Threatened	important habitat for sp. at risk of exploitation
MOLLUSCA/ BIVALVIA	Simpsonaias ambigua	salamander mussel	Ø(Z O		200E	1			W			US candidate species & WI threatened	Utilize wetland in larval stage
MOLLUSCA/ BIVALVIA	Theliderma metanevra	monkeyface		2 0		200E	9						Wisconsin threatened	Utilize wetland in larval stage
MOLLUSCA/ BIVALVIA	Tritogonia verrucosa	Buckhorn	V.	2 0		3008	9						Wisconsin Threatened	Utilize wetland in larval stage
Others									_					
CHORDATA/ REPTILIA	Apalone mutica	Smooth Softshell				2 000]			LC			WI special concern	
CHORDATA/ REPTILIA	Aspidoscelis sexlineata	Six-lined Racerunner]			LC			WI special concern	
CHORDATA/ REPTILIA	Coluber constrictor	North American Racer)			LC			WI special concern	
CHORDATA/ REPTILIA	Crotalus horridus	Timber Rattlesnake	2]			LC			WI special concern	
CHORDATA/ REPTILIA	Diadophis punctatus arnyi	Prairie Ring- necked Snake	2]						WI special concern	
CHORDATA/ REPTILIA	Emydoidea blandingii	Blanding's Turtle]			EN			WI special concern & US candidate species	
CHORDATA/ MAMMALIA	Eptesicus fuscus fuscus	Big Brown Bat	V)	7 0		2 000]						WI threatened	utilize upland area as foraging habitat

Phylum	Scientific name	Common name	Species qualifies under criterion	Species contributes under criterion	Size	Period of pop. Est.	% occurrence 1)	IUCN Red List	CITES Appendix I	CMS Appendix I	Other Status	Justification
CHORDATA/ REPTILIA	Glyptemys insculpta	Wood Turtle]			EN			WI Threatened	critical habitat for sp.
CHORDATA/ AMPHIBIA	Lithobates palustris	Pickerel Frog			1			LC				prefers to overwinter in cold water streams, seepage pools or spring holes
CHORDATA/ MAMMALIA	Microtus ochrogaster	Prairie Vole)			LC			WI Special Concern	
CHORDATA/ REPTILIA	Pantherophis spiloides	Gray Ratsnake]			LC			WI special concern	
CHORDATA/ MAMMALIA	Peromyscus maniculatus	North American Deermouse; Deer Mouse	2 000]			LC			WI Special Concern	
CHORDATA/ REPTILIA	Pituophis catenifer	Gophersnake	2 000]			LC			WI special concern	
ARTHROPODA/ INSECTA	Polyamia dilata	Prairie leafhopper	2 000)						Wisconsin Threatened	
ARTHROPODA/ INSECTA	Somatochlora hineana	Hine's Emerald)			LC			US Endangered, Wisconsin Endangered	Utilize wetland for egg and larval stages
ARTHROPODA/ INSECTA		Wallace's deepwater mayfly	2 000)						Wisconsin Endangered	
ARTHROPODA/ INSECTA	Stenelmis knobeli	Knobel's Riffle beetle	2 000]						Wisconsin Endangered	
CHORDATA/ REPTILIA	Terrapene ornata	Ornate Box Turtle)			NT			WI Endangered	

¹⁾ Percentage of the total biogeographic population at the site

Data sources for Lampsilis higginsii are below.

Mussel Coordination Team (USFWS, USGS, NPS, ACOE, WDNR, MDNR, IDNR, INR). February 2017. Results of 2016 Monitoring of Freshwater Mussel Communities of the Wisconsin River near Orion, Richland County, Wisconsin. 15p.

Mussel Coordination Team. 2011. Mussel Survey Lampsilis higginsii Re-location Site Wisconsin River near Prairie du Sac, Wisconsin. 10p. Heath D. J. . 2003. Results of 2002 monitoring of freshwater mussel communities of the Wisconsin River near Orion, Richland County, Heath, D. J. . 1995. A description of the Orion mussel aggregation of the Wisconsin River, Wisconsin with reference to Lampsilis higginsii (Lea, 1957) (Bivalvia: Unionidae). Wisconsin Department of Natural Resources, Prairie du Chien, WI. 21 p.

U.S. Fish and Wildlife Service.2004. Higgins Eye Pearlymussel (Lampsilis higginsii) Recovery Plan: First Revision. Ft. Snelling, Minnesota. 126 p.

Heidi L. Dunn, EcoAnalysts, Inc. November 2018. Upper Mississippi River Higgins Eye (Lampsilis higginsii) Freshwater Mussel Monitoring Synthesis Report for the Rock Island, St. Paul, and St. Louis U.S. Army Corps of Engineers. 124 p.

3.4 - Ecological communities whose presence relates to the international importance of the site

Name of ecological community	Community qualifies under Criterion 2?	Description	Justification
Roodplain forest	Ø	Extensive along most of floodplain; large, contunuous and mature tracts	W Vulnerable
Sedge meadow	2	Small to extensive, on floodplain and perched along terraces	WI Vulnerable
Deep water marsh	Ø	In pockets of floodplain, especially where protected by natural and man-made berms, and beaver dams	
Hardwood swamp	2	In pockets, uncommon, generally in peaty sites above or isolated in floodplain	WI imperiled
Vioist cliff	2	Fairly common in uplands and some wetland borders	
Dryprairie	v	On exposed bluffsides	WI Vulnerable Global Vulnerable
Dry-mesic prairie	✓	Upland bluffs and terraces wetland borders	WI Vulnerable Global Vulnerable
Sand prairie	✓	Upland bluffs and terraces wetland borders	WI Imperiled Global Vulnerable
Net prairie	Ø	Several in floodplain, small to large, includes largest west of Mssissippi River (Avoca); often mixed with sedge meadow	Global Vulnerable
Net-mesic prairie	Ø	IN floodplain, often mixed with wet prairie, sedge meadow	WI Imperiled Global Imperiled
Oak barrens	Ø	Frequent, small to extensive on river sand deposits in and along floodplain; high management priority by WDNR	WI Imperiled
Forested bluff	✓	Common, quality fair to high	
Southern dry mesic forest	✓	Oak forest with high management priority	WI Vulnerable
Pine relict	✓	Scattered on bluffs and occasionally in wetland	Vulnerable

4 - What is the Site like? (Ecological character description)

4.1 - Ecological character

The 149 km-long LWR centers on the warm-water, slow-moving, braided Wisconsin River—spared from development and damming by its deep, shifting sand deposits, a legacy from outwash and fluvial deposition of Pleistocene glaciation. It is a relatively wild, continuous natural area with a wide variety of native plant-animal communities, wildlife-friendly non-native grasslands, low-intensity ag lands, wooded villages, and woodlots. The floodplain along the river includes many wooded and sand-beach islands. The river is usually bounded by a low natural levee, behind which the floodplain is characterized by wet- and wet-mesic forest, sloughs, and oxbow lakes, and sometimes marshes, wet prairies, or sedge meadows. These wetlands may be augmented by beaver dams or by artificial shallow impoundments maintained for shallow and deepwater marsh conditions. On deltas where small rivers enter, extensive wetlands have developed. At the edge of the floodplain, and often within it, are sand terraces that support xeric plant-animal communities. Farther from the river are typically more fine-soiled terraces on which agriculture, villages, woodlots, and some homes prevail. The steep unglaciated sandstone and dolomite hills that flank the valley along almost its entire course are mostly wooded but with some dry "goat" prairies, restored fire-maintained savannas and woodlands, and shaded or exposed cliffs. In other areas, sand terraces are lacking, the band of floodplain forest may be narrow or absent, and the forest bluffs rise directly from the riverbank.

Dynamic and widespread ecotones connect these communities, one wetland to another and between wetlands and they're adjacent and contained uplands. This allows for plant and animal migrations and responses by communities and species populations to seasonal and longer-term changes in hydrology, rainfall, weather, fire, disturbance, and probably climate. Many species are specially adapted to these ecotones. Some communities, like river barrens and oxbow sloughs, are better represented here than anywhere else in the State or Midwest and are essential to rare fauna. The LWR connects directly with the nationally significant Mississippi River (also a Ramsar Wetland of International Importance), the Driftless Area, and the Upper Mississippi migratory bird flyway. The extent, variety, connectedness, and relatively natural character of plant-animal communities of this area make it one of the most ecologically significant riverways in North America.

4.2 - What wetland type(s) are in the site?

	lands

nland wetlands				
Wetland types (code and name)	Local name	Ranking of extent (1: greatest - 4: least)	Area (ha) of wetland type	Justification of Criterion 1
Fresh water > Lakes and pools >> O: Permanent freshwater lakes		0	96.96	Rare
Fresh water > Lakes and pools >> P: Seasonal/ intermittent freshwater lakes		0	43.25	Rare
Fresh water > Lakes and pools >> Tp: Permanent freshwater marshes/ pools		2	1706.56	Representative
Fresh water > Marshes on inorganic soils >> Ts: Seasonal/ intermittent freshwater marshes/ pools on inorganic soils		3	851.13	Unique
Fresh water > Marshes on inorganic soils >> W: Shrub- dominated wetlands		0	533.89	Rare
Fresh water > Marshes on inorganic soils >> Xf: Freshwater, tree-dominated wetlands		1	7446.31	Representative
Fresh water > Marshes on peat soils >> Xp: Permanent Forested peatlands		4	813.46	Unique

Other non-wetland habitats within the site	Area (ha) if known
Oak barrens	
Cak opening	
Oak woodland	
Moist diff	
Dry prairie	
Dry-mesic prairie	
Mesic prairie	
Wet-mesic prairie	
Drydiff	
Sand prairie	
Forested bluff	
Southern mesic forest	
Southern dry-mesic forest	
Southern dry forest	
Pine relict	
Pine barrens	

(ECD) Habitat connectivity The connection of upland forests with bedrock outcrops of Dry Prairie to the expansive lowland forests and wetlands of the river valley bottom are exceptional

4.3 - Biological components

4.3.1 - Plant species

Other noteworthy plant species

Scientific name	Common name	Position in range / endemism / other
Acer saccharinum	Silver maple	
Betula nigra	River birch	
Chaerophyllum procumbens	Spreading chervil	
lodanthus pinnatifidus	Purple Rocket	
Platanus occidentalis	Sycamore	Northern extent of range
Populus deltoides	Eastern cottonwood	
Potamogeton oakesianus	Oakes' pondweed	
Quercus bicolor	Swamp white oak	
Zizania aquatica	Wild rice	
Zizania palustris	Wild rice	

Invasive alien plant species

Scientific name	Common name	Impacts	
Lonicera tatarica	Eurasian honeysuckle	Actual (minor impacts)	No change
Lythrum salicaria	Purple loosestrife	Actual (minor impacts)	No change
Phalaris arundinacea	Reed-canary grass	Actual (major impacts)	No change
Potamogeton crispus	Curly-leaf pondweed	Actual (minor impacts)	No change
Rhamnus cathartica	Common buckthorn	Actual (minor impacts)	No change

4.3.2 - Animal species

Phylum	Scientific name	Common name	Pop. size	Period of pop. est.	%occurrence	Position in range /endemism/other
CHORDATA/ACTINOPTERYGII	Acipenser fulvescens	Lake Sturgeon;Lake Sturgeon;Lake Sturgeon;Lake Sturgeon				
HORDATA/ACTINOPTERYGII	Aphredoderus sayanus	Pirate perch				
:HORDATA/ACTINOPTERYGII	Erimyzon sucetta	Lake chubsucker;Lake chubsucker				
:HORDATA/ACTINOPTERYGII	Etheostoma asprigene	Mud darter				
:HORDATA/ACTINOPTERYGII	Etheostoma microperca	Least darter				
ARTHROPODAINSECTA	Libellula cyanea	Spangled Skimmer				Northwestern extent of range
HORDATA/ACTINOPTERYGII	Macrhybopsis storeriana	Silver chub;Silver chub				
ARTHROPODAINSECTA	Nasiaeschna pentacantha	Cyrano Darner				Northwestern extent of range
CHORDATA/ACTINOPTERYGII	Notropis texanus	Weed shiner;Weed shiner				
:HORDATA/ACTINOPTERYGII	Opsopoeodus emiliae	Pugnose minnow;Pugnose minnow				

Invasive alien animal species

Phylum	Scientific name	Common name	Impacts	
CHORDATA/ACTINOPTERYGII	Ctenopharyngodon idella	Glass carp	Potential	No change
MOLLUSCA/BIVALVIA		many-shaped dreissena;zebra mussel	Actual (major impacts)	No change

4.4 - Physical components

4.4.1 - Climate

Climatic region	Subregion
D: Moist Mid-Latitude	Dfb: Humid continental (Humid with severe winter, no dry season, warm
difficie wat cold without	summer)

Spring bird migration phenology has advanced. Flooding patterns appear to be changing, with more frequent and intense summer floods—

	ırtle nests and			rs. The effect of floods on tree seedling survival and herbaceous vegetatio
4.4.2 - Geomorphic sett	tina			
a) Minimum elevation ab		404		
	metres)	184		
a) Maximum elevation ab	oove sea level (in metres)	350		
		En	tire river basin	
		Upper par	t of river basin	
		Middle par	t of river basin \square	
		Lower par	t of river basin 🗹	
		More than o	one river basin 🗆	
		No	t in river basin 🗆	
			Coastal	
			· · · · · · · · · · · · · · · · · · ·	e the larger river basin. For a coastal/marine site, please name the sea or ocean. es within the Mississippi River basin.
4.4.3 - Soil				
			Mineral ☑	
			Organic 🗹	
		No availab	ole information	
Are soil types subject to condition	change as a resu ons (e.g., increase			
4.4.4 - Water regime				
Water permanence				
Presence? Usually permanent water				
present	No chan	ge		
Source of water that maintains				
Presence? Water inputs from surface	Predominant wa	ter source	No change	
water Water inputs from			No change	
groundwater Water inputs from rainfall /			No change	
snowfall				
Water destination Presence?				
To downstream catchment	No chan	ge		
Stability of water regime Presence?				
Water levels fluctuating (including tidal)	No chan	ge		
(moduling tidal)				
approximately 88.5 km kilometers (10,400 sq The extremes in river f	n (55 mi.) abov . mi.). The long lows are repre cfs). The com	ve the con g term me esented by bined dyr	offluence with the Mississed dian and mean flows and the lowest recorded flowarding and the manics of fluctuating and the manicular mani	this boxto explain sites with complexhydrology. sippi River, the river drains a catchment area of about 26,936 square re 348.3 cm/sec (12,300 cfs) and 412.9 cm/sec (14,900 cfs) respectively. ow in 1964 at 54 cm/sec (1,916 cfs) and highest recorded flow in 1916 at d significant flow rates across braided channels and natural floodplain
(ECD) Connectivity of surfa	ce waters and of groundwater		erous cutoff channel ox minant hydrologic phas	bow lakes are dynamic ecosystems that change and connect around
(ECD) Stratification an	_	Wetlands	, ,	ow mixed water wetlands to deeper oxbow lakes that stratify due to
		depth.		
4.4.5 - Sediment regime				
_			urs on the site 🗹	
Significant accretion or	•		_	
Significant transportation			_	
Sediment regime is highly		-	niter-annually 🗷	

Please provide further information on sediment (optional):

The LWR is a low gradient stream (1.5 feet per mile) with braided relatively shallow side channels and sluggish flow under normal conditions. The sand and gravel material (from outwash) is constantly being picked up as bed load and re-deposited through the active river floodplain. This results in ongoing island and sandbar building and destruction while the main channel of the river moves laterally throughout the valley. Soils within the valley reflect their position on the landscape. The bluff tops are covered with a loess cap at many locations with silt to clay loams formed from the underlying bedrock. Sand terraces with little organic matter occur within the valley. Bottomland soils in the active floodplain range from mucky sands with some peat in swales to low sandy ridges. Unique aquatic habitat niches, micro-topography, and climate are the products of shape of the valley, physiographic setting, the soils, and the quantity and quality of the water and sediment moving through the

		3 1	,
	(ECD) Water turbidity and colour	Turbidity in backwater areas averages 2.3 Nephelometric Units (NTU), compared to river turbid averaging 10.6 NTU.	dity
	(ECD) Water temperature	range from 11.0 degrees Celsius to 22.7 degrees Celsius.	
4.6 - Wa	ntor pH		
4.0 - VV	itel pri		
		Acid (pH<5.5) □	
	C	Circumneutral (pH: 5.5-7.4) ✓	
		Alkaline (pH>7.4) ☑	
		Unknown	
Please pro	vide further information on pH (opt	otional):	
Summer	pH in profiles collected from	om backwater areas ranged from 7.0 to 8.3 SU, with the majority of readings alkaline.	
4.7 - Wa	ater salinity		
		Fresh (<0.5 g/l)	
	Mixohaline (brack	kish)Mxosaline (0.5-30 g/l)	
	Eu	uhaline/Eusaline (30-40 g/l) □	
	Hyperh	haline/Hypersaline (>40 g/l) □	
		Unknown	

4.4.8 - Dissolved or suspended nutrients in water

Please provide further information on salinity (optional)

Eutrophic 🗹

Mesotrophic 🗹

Oligotrophic

Dystrophic

Unknown

Please provide further information on dissolved or suspended nutrients (optional):

Summer dissolved phosphorus concentrations, collected over a period of seven years from many backwater wetlands, ranged from 15 to 3000 ug/l, while chlorophyll concentrations ranged from 0.68 to 62.3 ug/l. Nitrate samples collected over a two-year period in some backwater wetlands ranged from low at 0.0295 to high at 13.3 mg/l. Samples were analyzed by the Wisconsin State Lab of Hygiene. Data indicated that some backwater wetlands were oligotrophic, while many were eutrophic.

Chlorides are low in the Wisconsin River. Surface water chloride samples collected over a period of 2.5 years on a monthly basis from the

Wisconsin River main channel ranged from 11.9 to 24 mg/l. Samples were analyzed by the Wisconsin State Lab of Hygiene.

(ECD) Dissolved organic carbon	Data on Carbon has not been collected or measured in backwater wetlands
(ECD) Redox potential of water and sediments	Data on Redox potential has not been collected or measured in backwater wetlands
(ECD) Water conductivity	collected in profiles from backwater wetlands indicated conductivity ranged from 246 to 606 UMHOS/CM.

4.4.9 - Features of the surrounding area which may affect the Site

Please describe whether, and if so how, the landscape and ecological characteristics in the area surrounding the Ramsar Site differ from the i) broadly similar O ii) significantly different o site itself:

Surrounding area has greater urbanisation or development

Surrounding area has higher human population density

Surrounding area has more intensive agricultural use 🗹

Surrounding area has significantly different land cover or habitat types $\ensuremath{\overline{\psi}}$

Please describe other ways in which the surrounding area is different

In the catchment area surrounding the LWR, agricultural lands comprise 50-75% of the land. Forest lands make up 20% to 30% of the landscape. Less than 6% of the area surrounding the proposed site is in public conservation and these are small and scattered parcels. There are seven incorporated cities/villages in the surrounding area, yet the LWR counties are the least densely populated in southern Wisconsin with an estimated 42 people per square mile.

4.5 - Ecosystem services

4.5.1 - Ecosystem services/benefits

Provisioning Services

Ecosystem service	Examples	Importance/Extent/Significance
Food for humans	Sustenance for humans (e.g., fish, molluscs, grains)	High
Fresh water	Drinking water for humans and/or livestock	Low
Wetland non-food products	Timber	Medium
Wetland non-food products	Fuel wood/fibre	Medium

Regulating Services

Ecosystem service	Examples	Importance/Extent/Significance
Maintenance of hydrological regimes	Groundwater recharge and discharge	High
Maintenance of hydrological regimes	Storage and delivery of water as part of water supply systems for agriculture and industry	High
Erosion protection	Soil, sediment and nutrient retention	High
Pollution control and detoxification	Water purification/waste treatment or dilution	High
Hazard reduction	Flood control, flood storage	High
Hazard reduction	Coastal shoreline and river bank stabilization and storm protection	High

Cultural Services

Cultural Services			
Ecosystem service	Examples	Importance/Extent/Significance	
Recreation and tourism	Recreational hunting and fishing	High	
Recreation and tourism	Water sports and activities	High	
Recreation and tourism	Picnics, outings, touring	High	
Recreation and tourism	Nature observation and nature-based tourism	High	
Spiritual and inspirational	Inspiration	High	
Spiritual and inspirational	Cultural heritage (historical and archaeological)	High	
Spiritual and inspirational	Contemporary cultural significance, including for arts and creative inspiration, and including existence values	High	
Spiritual and inspirational	Spiritual and religious values	High	
Spiritual and inspirational	Aesthetic and sense of place values	High	
Scientific and educational	Educational activities and opportunities	High	
Scientific and educational	Important knowledge systems, importance for research (scientific reference area or site)	High	
Scientific and educational	Long-term monitoring site	High	
Scientific and educational	Major scientific study site	High	

Supporting Services

Ecosystem service	Examples	Importance/Extent/Significance
Biodiversity	Supports a variety of all life forms including plants, animals and microorganizms, the genes they contain, and the ecosystems of which they form a part	High
Soil formation	Sediment retention	Medium
Soil formation	Accumulation of organic matter	Medium
Nutrient cycling	Storage, recycling, processing and acquisition of nutrients	Medium
Nutrient cycling	Carbon storage/sequestration	Medium
Pollination	Support for pollinators	Medium

Other ecosystem service(s) not included above:

For a summary of ecosystem services in the words of users, residents and scientists, see two video documentaries listed in the Bibliography (Erickson 1994, 2011).

Within the site: 100,000s

Outside the site: 100,000s

Have studies or assessments been made of the economic valuation of ecosystem services provided by this Ramsar Site? Yes

No O Unknown O

Where economic studies or assessments of economic valuation have been undertaken at the site, it would be helpful to provide information on where the results of such studies may be located (e.g. website links, citation of published literature):

In recent decades, tourism associated with winter Bald Eagle watching along the LWR brings about 1,000 cars of visitors weekly and up to \$1.2 million annually into the economy of the Sauk Prairie area (Hedemark and Winesett 2015). A review of recreational user surveys (FLOW 2014) documented high numbers of users daily throughout the rest of the year, e.g., a riverway-long aerial survey on 9 Aug 2014 recorded 500 camping tents and 968 motorized and (mostly) nonmotorized craft. Two of the many canoe liveries have an annual average of about \$237K gross income, 11 employees, and 4.7K paddlers served; and 288K angler-hours in 1990.

4.5.2 - Social and cultural values

i) the site provides a model of wetland wise use, demonstrating the application of traditional knowledge and methods of management and $\ensuremath{\omega}$ use that maintain the ecological character of the wetland

Description if applicable

The LWSR is managed to promote a variety of traditional and recreational uses. The wetlands of the LWSR offer materials useful for the perpetuation of tribal culture. Sustainable forestry production of timber and pulp provides considerable value to local economies while preserving wildlife habitat.

The LWSR features many campgrounds, trails, shore angling areas, boat landings, public hunting grounds, and fishing and guide services, all of which support ecotourism. Part of the Site was designated the LWSR in 1989, a status earned due to the tremendous scenic quality of the surrounding valley as well as the undeveloped character of the final 92 miles of the Wisconsin River.

With approximately 45,000 acres of LWSR under state ownership, an additional 5,000 acres under easement, and the remaining 30,000 acres of private lands having some scenic beauty and habitat protection (through ss. Ch. 30.40), the LWSR stands as a marvelous model of wise wetland use.

ii) the site has exceptional cultural traditions or records of former civilizations that have influenced the ecological character of the wetland

Description if applicable

Human presence in the LWR valley dates back to the end of the last glacial period (12,000 BCE), as evinced by the 1897 discovery of the Boaz Mastodon skeleton and accompanying quartzite spear point just 20 miles from the present-day LWR. Archaeological excavations have also revealed evidence of human habitation in southwestern Wisconsin during the Archaic and Woodland periods. As the hunter-gathers progressed toward a more sedentary and agrarian lifestyle, the river was a reliable source of irrigation and many societies settled in the valley.

Father Jacques Marquette wrote the first European record of the valley when he and Louis Jolliet made their historic voyage in 1673 across Lake Michigan, up the Fox River to modern-day Portage, WI, and down the LWR to the Mississippi River. The explorations of Marquette and Jolliet opened the region to eventual exploitation by the fur trade in pursuit of beaver, muskrat, and other desirable mammals.

Trappers and traders established relations with the indigenous people and trade flourished, as did frequent hostilities. By 1766, the Ho-Chunk (formerly Winnebago) Nation had been forced to share lands with other tribes who had been pushed westward by French and British expansion The Ho-chunk historically managed wetlands through fire and animal husbandry, and wetlands continue to play a critical role in their cultural heritage. During early American influence in the region, a great deal of maltreatment through broken promises and treaty brokering chicanery occurred, leading to various tribal uprisings in the early 1800s.

The most famous is the Black Hawk War of 1832, which began when the chief Black Hawk led a band of Sauk and Meskwaki (Fox) into northwestern Illinois in an attempt to reclaim tribal lands. Although women, children, and elderly comprised the majority of the migrants, US officials mobilized militia and government troops to confront the natives. In response, the Sauk and Fox fled north up the Rock River and then traveled west around Madison's four lakes and along the LWR. On July 21, 1832, the Battle of Wisconsin Heights occurred near present-day Sauk City, WI. Despite being vastly outnumbered and sustaining heavy casualties, Black Hawk's warriors managed to delay the military forces long enough to allow most of the civilians to escape across the LWR. As demonstrated by these events and discoveries, the LWR and its associated wetlands played an integral role in the region's history.

iii)	the e	cological	cha	ract	er of the	wetland de	эе	nds on its intera	actio	n \square
				with	n local co	mmunities	or	indigenous pe	ople	s

iv) relevant non-material values such as sacred sites are present and their existence is strongly linked with the maintenance of the ecological ${\mathfrak C}$

character of the wetland

Description if applicable

The proposed Site contains a rich tapestry of effigy mounds and places of anthropological importance. Some of the peoples who lived along the upper Mississippi River east to Lake Michigan during the Woodland period (1000 BCE – 1000 CE) were part of the Effigy Moundbuilders. This culture is named for the distinctive mounds they created from raised piles of earth, many of which functioned as burial sites. The effigies are recognizable animals such as bears, turtles, deer, and birds, while other mounds are abstract long linear embankments or conical domes. More mounds were built by ancient Native American societies in Wisconsin than in any other region of North America. Of the estimated 15,000 effigy mounds originally in Wisconsin, fewer than 4,000 remain. Early European settlers and their descendants plowed over mounds or destroyed them to construct homes, roads, and towns. Historically, large concentrations of effigy mounds were found along the shores of Madison's four lakes and in the southwestern part of the state along the LWR and Mississippi River. That the mounds were formed in close proximity to waterways and wetlands indicates the strong tie of these areas in tribal culture.

In addition to effigy mounds, another special site is the famous Gottschall Rockshelter near Muscoda, WI, which borders the LWR. Here the influence of the Mississippian culture is represented by the artistic style of the pictographs displaying Red Horn, a mythic figure in Siouan oral traditions.

These sacred Native American sites and the artifacts they contain are protected through national legislation and a 1985 Wisconsin state law. Furthermore, several mound groups along the LWR are listed on the National Register of Historic Places to support the preservation of this significant cultural resource.

4.6 - Ecological processes

<no data available>

5 - How is the Site managed? (Conservation and management)

5.1 - Land tenure and responsibilities (Managers)

5.1.1 - Land tenure/ownership

ı ub	lic owners	u III

Category	Within the Ramsar Site	In the surrounding area
Provincial/region/state government	>	/
National/Federal government	V	V
Local authority, municipality, (sub)district, etc.		Ø

Private ownership

Category	Within the Ramsar Site	In the surrounding area
Commercial (company)		✓
Other types of private/individual owner(s)	V	V

Other

Category	Within the Ramsar Site	In the surrounding area
Unspecified mixed ownership		✓

5.1.2 - Management authority

Please list the local office / offices of any Wisconsin Department of Natural Resources (responsible for managing land within its ownership. Lands agency or organization responsible for owned by other agencies, nations, and private individuals are managed by those owners.) managing the site:

Provide the name and/or title of the person or people with responsibility for the wetland:

Matt Sequin

Postal address:

Department of Natural Resources 5808 County Highway C

Spring Green WI, 53588

E-mail address: matthew.seguin@wisconsin.gov

5.2 - Ecological character threats and responses (Management)

5.2.1 - Factors (actual or likely) adversely affecting the Site's ecological character

Human settlements (non agricultural)

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Housing and urban areas	Low impact	Medium impact	1	✓
Commercial and industrial areas	Low impact	Medium impact	 ✓	V

Water regulation

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area		
Drainage	Medium impact	High impact	✓	✓		
Canalisation and river regulation	High impact	High impact	✓	✓		

Agriculture and aquaculture

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Annual and perennial non- timber crops	Medium impact	High impact	✓	2

Energy production and mining

371				
Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Mining and quarrying	Medium impact	Medium impact	✓	✓

Transportation and service corridors

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Roads and railroads	Medium impact	Medium impact	✓	✓

Biological resource use

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Logging and wood harvesting	Medium impact	Medium impact	✓	2
Unspecified	Medium impact	Medium impact	✓	✓

Human intrusions and disturbance

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Recreational and tourism activities	Low impact	Medium impact	✓	✓
Unspecified/others	Low impact	Low impact	✓	2

Natural system modifications

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Fire and fire suppression	Medium impact	Medium impact	✓	✓
Dams and water management/use	High impact	High impact		V
Unspecified/others	High impact	High impact		✓

Invasive and other problematic species and genes

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Invasive non-native/ alien species	High impact	High impact	₽	2

Pollution

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Agricultural and forestry effluents	Medium impact	High impact	✓	✓

Climate change and severe weather

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Temperature extremes	unknown impact	High impact	✓	✓
Storms and flooding	Medium impact	High impact	1	✓

Please describe any other threats (optional):

Fish passage obstruction, Boat propeller fish injury, High deer populations and browse pressure, terrestrial animal pests, diseases e.g. Dutch elm

5.2.2 - Legal conservation status

Non-statutory designations

Designation type	Name of area	Online information url	Overlap with Ramsar Site
Important Bird Area	Lower Wisconsin River	http://www.wisconsinbirds.org/ib a/sites.htm	whole
Other non-statutory designation	Conservation Opportunity area: Lower Wisconsin River Bluffs and Floodplain	http://dnr.wi.gov/topic/Wildlife Habitat/COA.html	whole
Other non-statutory designation	Wisconsin Wetland Association Wetland Gem	http://wisconsinwetlands.org/wp- content/uploads/2015/06/Wetland- Gems-Intro.pdf	whole

5.2.3 - IUCN protected areas categories (2008)

2.0 10 014 protostou drodo odtogonico (2000)
la Strict Nature Reserve ☑
lb Wilderness Area: protected area managed mainly for wilderness protection
II National Park: protected area managed mainly for ecosystem protection and recreation
Ill Natural Monument: protected area managed mainly for conservation of specific natural features
IV Habitat/Species Management Area: protected area managed mainly of roconservation through management intervention
VProtected Landscape/Seascape: protected area managed mainly for

landscape/seascape conservation and recreation

VI Managed Resource Protected Area: protected area managed mainly

for the sustainable use of natural ecosystems

5.2.4 - Key conservation measures

Legal protection

20ga: p. 01001011		
Measures	Status	
Legal protection	Implemented	

Habitat

Measures	Status
Catchment management initiatives/controls	Proposed
Improvement of water quality	Proposed
Habitat manipulation/enhancement	Implemented

Species

Measures	Status		
Threatened/rare species management programmes	Implemented		
Control of invasive alien plants	Implemented		
Control of invasive alien animals	Implemented		

Human Activities

Turrian Activities	
Measures	Status
Management of water abstraction/takes	Implemented
Regulation/management of wastes	Implemented
Livestock management/exclusion (excluding fisheries)	Partially implemented
Fisheries management/regulation	Implemented
Harvest controls/poaching enforcement	Implemented
Regulation/management of recreational activities	Implemented
Communication, education, and participation and awareness activities	Implemented
Research	Implemented

5.2.5 - Management planning

Is there a site-specific management plan for the site? Yes

Has a management effectiveness assessment been undertaken for the site? Yes O № ●

If the site is a formal transboundary site as indicated in section Data and location > Site location, are there shared management planning Yes O No

processes with another Contracting Party?

Please indicate if a Ramsar centre, other educational or visitor facility, or an educational or visitor programme is associated with the site:

Educational and visitor programmes are located at Tower Hill State Park, Wyalusing State Park, and the Lower Wisconsin State Riverway Board office

URL of site-related webpage (if relevant): http://lwr.state.wi.us/

5.2.6 - Planning for restoration

Is there a site-specific restoration plan? Yes, there is a plan

5.2.7 - Monitoring implemented or proposed

oizii iiioiiiig iiipioiiioiiioa oi proposoa			
Monitoring	Status		
Water regime monitoring	Implemented		
Water quality	Implemented		
Plant community	Implemented		
Plant species	Implemented		
Animal species (please specify)	Implemented		
Birds	Implemented		

Animal species (waterfowl)
Animal species (frogs and toads)
Animal species (Ouachita Map turtle nests)
Animal species (white-tailed deer)
Animal Species (bobcat)
Animal Species (molluscs)
Animal Species (fish)

6 - Additional material

6.1 - Additional reports and documents

6.1.1 - Bibliographical references

Durbin, R.D. 1977. The Wisconsin River: An Odyssey Through Time and Space. Spring Freshet Press, Cross Plains, WI.

Marshall, D.W. 2013. Lower Wisconsin River Floodplain Lakes Water Pollution Investigation. Diagnostic and Feasibility Study Part 1. River Alliance Lake Planning Grant Study.

Marshall, D.W. 2012. Surveys of River Floodplain Habitats for Fish Species with Inventory Needs, SGCN and Associated Off-channel Fish Populations. WDNR State Wildlife Grant (SWG-11) Final Report.

Marshall, D.W., J. Lyons, J. Unmuth, and J. Parker. 2010. Surveys of river floodplain habitats for fish species with inventory needs, SGCN and associated off-channel fish populations. WDNR State Wildlife Grant (SWG-09) Final Report, 19 pp.

Marshall, D.W. and J. Lyons. 2008. Documenting and Halting Declines of Nongame Fishes in Southern Wisconsin. Pp 171-181 in D. M. Waller and T.R. Rooney, ed., The Vanishing Present: Wisconsin's Changing Lands, Waters, and Wildlife. University of Chicago Press.

Marshall, D.W., Wade, K., Unmuth, J., and Schlaudt, E., 2016. Restoring Lower Wisconsin State Riverway Oxbow Lakes Phase 2: Diagnostic and Feasibility Study, DNR Lakes Planning Grant.

Sauer, S. 2008b. Invertebrates collected at Blue River Sand Barrens (SNA 069). From DNR Study 053 Records as of August 1, 2008. Unpub. Report.

Pfeiffer, S.M., J.M. Bahr, and R.D. Beilfuss. 2006. Identification of groundwater flowpaths and denitrification zones in a dynamic floodplain aquifer. J. Hydrology 325(1-4): 262- 272. WDNR. 2019. Ecological Landscapes of Wisconsin. https://dnr.wi.gov/topic/landscapes/

WDNR. 1995. Wisconsin's Biodiversity as a Management Issue: A Report to DNR Managers. Madison, WI.

WDNR. 2004. Wisconsin's Statewide Forest Plan: Ensuring a Sustainable Future. http://dnr.wi.gov/forestry/assessment/

WDNR. 2006a. Wisconsin Land Legacy Report: an inventory of places critical in meeting Wisconsin's future conservation and recreation needs. Madison, WI. WDNR. 2006b. Wisconsin Wildlife Action Plan. http://dnr.wi.gov/org/land/er/wwap/plan/.

WDNR. 2007. Important Bird Areas of Wisconsin: Critical Sites for the Conservation and Management of Wisconsin's Birds.

WDNR. 2010a. Lower Wisconsin State Riverway Implementation Plan: 2010 – 2014.

WDNR. 2011. Biotic Inventory and Analysis of the Lower Wisconsin State Riverway: Baseline Inventory and Analysis of Natural Communities, Rare Plants, and Animals. Madison, WI.

WDNR. 2016. Lower Wisconsin State Riverway Master Plan. https://dnr.wi.gov/files/PDF/pubs/lf/LF0093.pdf

Erickson, Dave. 1994. Gather like the Waters. 2 hr video documentary. Ootek Productions and Wisconsin Public Television, Madison. http://www.caughtintime.com/OotekProductionsHOME.html

Erickson, Dave. 2011. Rhythm of the River. 1 hr video documentary. Ootek Productions and Wisconsin Public Television, Madison. Mussel Coordination Team (USFWS, USGS, NPS, ACOE, WDNR, MDNR, IDNR, INR). February 2017. Results of 2016 Monitoring of Freshwater Mussel Communities of the Wisconsin River

6.1.2 - Additional reports and documents

i. taxonomic lists of plant and animal species occurring in the site (see section 4.3)

<no file available>

ii. a detailed Ecological Character Description (ECD) (in a national format)

<no file available>

iii. a description of the site in a national or regional wetland inventory

<no file available>

iv. relevant Article 3.2 reports

<no file available>

v. site management plan

<no file available>

vi. other published literature

<no file available>

<no data available>

6.1.3 - Photograph(s) of the Site

Please provide at least one photograph of the site:

Woodland Phlox along LWR slough (Steve S. Meyer, 01-05-2012)

Nesting prothonotary warble along LWR slough (Steve S. Meyer, 01-05-2012)

Bluff woodland along LWR (Mike Mossman, 01-05-2013)

River paddlers (Jean. Unmuth. 01-09-2011)

Lower Wisconsin Riverway (Timothy Jacobson, 07-06-

Lower Wisconsin Riverway (Timothy Jacobson, 28-08-

Lower Wisconsin Riverway (Timothy Jacobson, 28-08-2020)

Lower Wisconsin Riverway (Timothy Jacobson , 26-10-2015)

Lower Wisconsin Riverway (Timothy Jacobson , 14-05-2016)

Lower Wisconsin Riverway (Timothy Jacobson , 17-10-2015)

Lower Wisconsin Riverway (Timothy Jacobson , 15-06-2016)

Lower Wisconsin Riverway (Timothy Jacobson , 28-08-2020)

6.1.4 - Designation letter and related data

Designation letter

<2 file(s) uploaded>

Date of Designation 2020-02-14